MATH 347 HW 11

due December 11, at the beginning of class

Homework Guildlines

Obviously, your solutions need to be complete and correct, but to receive full credit your write-up should also satisfy the following:

- All the important logical steps in the proof should be present and fully explained.
- All assumptions should be clearly identified.
- Your solutions should be clear and concise. If a sentence does not further the reader's understanding of the solution then it has no place in your write up.
- Use full and grammatically correct English sentences. Mathematical symbols should be used only to render complex mathematical relationships into a readable form.
Moreover, in order to obtain full credit for the homework, you must write down, in the very least, an attempt at a solution for each problem.

Problems

Do the following problems from your book: 7.6, 7.9, 7.17, 7.28, 7.34, 7.35. In addition to these problems please do the following:
(1) Consider the relation on $\mathbb{N} \times \mathbb{N}$ defined by

$$
(a, b) \sim(c, d): \Longleftrightarrow a+d=b+c
$$

Show that
(a) \sim defines an equivalence relation.
(b) Consider the function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z} ;(a, b) \mapsto a-b$. Show this respects the equivalence relation, that is

$$
(a, b) \sim(c, d) \Longrightarrow f(a, b)=f(c, d) .
$$

Conclude from this that there is a unique function φ : $\mathbb{N} \times \mathbb{N} / \sim \rightarrow \mathbb{Z}^{1}$.
(c) Prove that φ defines a bijection.
(d) Note that $\mathbb{N} \times \mathbb{N}$ can be given an addition operation by

$$
(a, b)+(c, d)=(a+c, b+d) .
$$

Show that this induces a well defined operation on the quotient set. Do the same for multiplication.
(e) Argue that φ satisfies the following condition ${ }^{2}$

$$
\varphi([\mathrm{a}, \mathrm{~b}]+[\mathrm{c}, \mathrm{~d}])=\varphi([\mathrm{a}, \mathrm{~b}])+\varphi([\mathrm{c}, \mathrm{~d}]) .
$$

(2) Let \mathcal{R} denote the set of Cauchy sequences in \mathbb{Q}. Let \sim denote the relation on \mathcal{R} given by

$$
\left\{a_{n}\right\} \sim\left\{b_{n}\right\}: \Longleftrightarrow \lim _{n \rightarrow \infty} a_{n}-b_{n}=0
$$

Please show the following:
(a) Show that \sim is an equivalence relation on \mathcal{R}^{3}
(b) Consider the function

$$
f: \mathcal{R} \rightarrow \mathbb{R} ;\left\{a_{n}\right\} \mapsto \lim _{n \rightarrow \infty} a_{n}
$$

Show that this function respects the equivalence relation. Conclude that there is a unique $\operatorname{map} \varphi: \mathcal{R} / \sim \mathbb{R}$.
(c) Show that φ is a bijection.
(d) One can define addition and multiplication on \mathcal{R} by

$$
\left\{a_{n}\right\}+\left\{b_{n}\right\}:=\left\{a_{n}+b_{n}\right\} \quad\left\{a_{n}\right\} \cdot\left\{b_{n}\right\}:=\left\{a_{n} \cdot b_{n}\right\} .
$$

Show that these induce well-defined operations on \mathcal{R} / \sim.
(e) Show that the map φ will satisfy

$$
\varphi\left(\left[\left\{a_{n}\right\}\right]+\left[\left\{b_{n}\right\}\right]\right)=\varphi\left(\left[\left\{a_{n}\right\}\right]\right)+\varphi\left(\left[\left\{b_{n}\right\}\right]\right) .
$$

[^0]
[^0]: ${ }^{1}$ This procedure is an instance of a more general construction referred to group completion or Grothendieck completion. It is a process which takes a monoid and produces a group.
 ${ }^{2}$ Thus φ is an example of a group homomorphism.
 ${ }^{3}$ The quotient set \mathcal{R} / \sim is an instance of a procedure known as the Cauchy completion of Q . It it can be applied more generally to any metric space (X, d).

